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ABSTRACT 
 
An algorithm for extracting the centerlines of neurons from 
3-D image stack collected from a laser scanning confocal 
microscope is presented. Recovery of neuronal structure 
from image stack is critical for quantitative analysis of 
neuron-morphology. Many methods have been proposed to 
extract the centerline from the tubular structure in medical 
images, such as vessels. But the same methods do not work 
well in processing of neurons. One of the reasons is that the 
physical limitations of the spatial resolution of the image 
stack collect by confocal microscopy in the z-direction is 
much worse than the resolution in x and y directions. In our 
studied cases the mean voxel size of the image stack is 

30.117.017.0 mμ×× i.e., the resolution in z-direction cannot 

reflect the fact that the neuron has a tubular structure. In this 
paper, we propose an almost automatic neuron-tracing 
algorithm for a set of confocal microscopic images of 
neuron. The method is designed based on finding a minimal 
path in the volume to extract the centerlines of a neuron.  
 

Index Terms— confocal microscopy, projection neuron, 
neuronal structure, centerline extraction, minimum path 
finding 
 

1. INTRODUCTION 
 
Current progress in imaging technologies have made 
possible to acquire a 3D image for the distribution of neural 
fibers in the brain (e.g. Drosophila) at high resolution [1][2]. 
To have a clear anatomical structure of neural networks is 
critical for the understanding of their functions such as the 
formation of memory. However, there are more than 100 
thousand neurons in the Drosophila brain. The task of 
tracing the circuit for each neuron manually is utterly 
impractical and eventually impossible. Although there has 
been some progress in tracing branches of blood vessels 
with computer algorithms, there has been no similar 
algorithm for tracing neural processes due to the highly 
variable morphologies in neurites. Bulges in the middle or at 
neural terminals are features fundamentally different from 
blood vessels. New computational algorithms are in need to 
make an automated tracing for neural fine structures possible. 

This is especially worthwhile when considering most 
functions are related to the fine structural modifications at 
neural terminals.  

The methods for tracking line structure for vasculature 
or anatomical structure can be categorized into four different 
approaches. The first is based on skeletonization and branch 
analysis [3]. The second is based on enhancing line or edge 
properties and then chains up those most likely pixels [4]. 
The third is referred to vectorial tracking [5]. The fourth is 
based on minimal cost path finding [6]-[8]. Many of these 
methods consider the cases that the image resolution in 
every direction is almost the same or assume that the 
intensity varies small in the region of interest (at least in a 
small section of a “tube”). However, these assumptions do 
not all hold for the Drosophila’s neuron image derived by 
confocal microscopy.  

In this paper, we propose an almost automatic centerline 
extracting method for a stack of confocal microscopic 
images. The proposed method is designed based on the 
minimal path finding and it is easy to implement. We present 
the method in next section. The results are shown in Section 
3 and we have a discussion in Section 4. 

  
2. METHODS 

 
2.1 Background – The global minimal paths 
 
The minimal path technique proposed in [9] captures the 
global minimum curve of a contour depending on energy 
between two given points. The well-known snake model [10] 
simultaneously considered the smoothness of the curve and 
the potential term, that was determined by the image features, 
in the energy functional. 
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In equation (1), , , and  are real positive constants, 
nsC ℜ∈)( represents a curve drawn in the image 

stack, ],0[ L=Ω is its domain of definition where L is the 

length of the curve, )(sC ′  and )(sC ′′  are first and second 

derivative with respect to s and ))(( sCP is the potential 

which is used to capture the desirable image feature. If s  
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represents the arc-length parameter then we can have a 
simplified energy form [9]�
�
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In this model w is a real positive constant which controls the 

smoothness of the contour [9] and PwP λ+=~
. 

Given a potential P > 0 that is defined to be small when 
the contour is close to the desired boundary. The objective 
of minimal path technique is to look for a path connecting a 

given pair of points such that the integral of PwP λ+=~
is 

minimal. A minimal energy action map )(
0

pU p  is defined 

as the minimal energy integrated along a path between a  
point 0p and another point p  in the images  
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where ppA
0

is the set of all paths between 0p  and p . Once 

the minimal energy action map is built, the minimal path 
between 0p  and  p  can be deduced easily. The minimal 

path approach has several advantages such as finding the 
global minimizer and ease of implementation. In the 
following, we present the proposed method, a 3-D 
approximated minimal path finding method, based on the 
global minimal path finding. 

 
2.2 Approximate minimal path method 
 
2.2.1. Pre-processing 
Since the spatial resolution of confocal microscopic images 
in the z-direction is much worse than the resolution in x and 
y directions, we pre-process the images slice-by-slice first. 
We then compute the minimal energy map from the 
processed image stack.   

For every slice we choose a threshold based on its 
intensity histogram and then binarized the image slice. A 
refined binary image stack, Vb is then obtained. A 3-D 26-
neighbor connected component analysis is applied. In most 
of the cases, the largest connected component is the desired 
neuron. Let V be the volume containing the binarized neuron. 
The Euclidean distance transform is then applied to each 
image slice in V and construct the skeletons, kS  of every 

object in the foreground of slice k. For each slice k, we 
compute a set of candidate 3-D end points by examining 9 
digital planes in the 26-neighborhood of each end point of 

kS . The details of the algorithm are referred to [11]. The set 

of skeleton points in each slice plays an important role in 
designing the potential function. The set of candidate end 
points is denoted E0. 

 

2.2.2. Awarding function and minimal path deduction 
In order to make the path lies in the center of the desirable 
structure, we define the potential as an awarding function f 
as follows. V can be considered as a grid graph that the 
vertices are voxels and the edges are defined by the 26-
neighborhood in V. Vp ∈∀ and its neighbor q, there is an 

edge defined by the pair of connected vertices ),( qp , 

),( qpf  satisfies the conditions: 

1) 0),( <qpf  if kSq ∈ , for some k, otherwise, it equals 0 

2) Let ),( qpDisEuclidean be the Euclidean distance between p 

and q. ),(),( qpDisqpf Euclidean<λ , kSq ∈∀ , for some k. 

Under the second restriction, we can guarantee that there are 
no negative edges in the weighted grid graph of V. 

By applying the awarding function to deduce the 
minimal path from a given source point, s is as follows. 
From the given source point, s, we apply the well-known 
Dijkstra’s algorithm to calculate the single source shortest 

paths to all the other end points, 0Et j ∈ .We iteratively 

perform the following steps. After each iteration, we remove 
some candidate end points from Ei to form the Ei+1,  i  0.  
1. We pick the longest path among all of the minimal paths 

jtsP , , i
j Et ∈ . 

2. Note that there could be candidate end points in Ei that 
are close to

jtsP , . These candidate end points are considered 

redundant and can be removed. These redundant end points 

are removed by )/( ,
1 TPEE

jts
ii ⊕=+ , where ⊕ is the 

Minkowski addition and T is a template structure. When 

φ=iE , the algorithm terminate.  

 
2.2.3 Polygonal path approximation 
Since the approximated centerline derived by applying the 
awarding functions is not smooth, (see Fig. 1(c)), we made 
an approximated polygonal path for each branch and at the 
meanwhile, the branch points are preserved. The 
approximation method is described below. 

Given a polygonal path S = <v0,…,vm> and an error 
bound , we look for a polygonal path,  that is a -
approximation of S.  = <u0 ,…,um> optimally -
approximates S if  meets the following criteria. 
1. Vertex set of  is a subset of S. 
2. let ui = vj and ui+1 = vk , i = 1, . . ., m-1, the distance 
between any vertex on the polygonal path <vj,…,vk> to the 
line segment (ui, ui+1) is less than . 
3. The number of the vertices on  is the least possible. 
This problem can be solved by using the dynamic 
programming technique.  

We define the number of edges on (i,j) to be its cost. 
The least cost among all the -approximation for S is the 
optimal cost denoted c(i, j). For the boundary condition that  
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i = j, we let c(i, j) = 1. If j > i, there are two cases to 
establish the optimal -approximation path. 
Case 1 : (i j) is the line segment (vi, vj)  
This case  occurs when all the distances between vertices vk, 
i  k  j, to (vi, vj) are less than . (vi, vj) -approximates <vi, 
vi+1,…, vj> and thus c(i, j) = 1. 
Case2: (i, j) consists of two or more line segments. 
In this case, (i, j) can be divided into two sub-path (i ,k) and 

(k, j) where vk is a vertex on <vi ,…,vj>. Note that both (i ,k) 

and (k, j) -approximate polygonal paths <vi ,…,vk> and 
<vk ,…,vj>. The cost for optimal -approximation c(i, j) is 

)),(),((min jkckicjki +<<  

Based on the above discussion, the optimal cost can be 
written in the recurrence.   

c(i, i) = 1    
c(i, j) = 1   if (vi, vj) -approximates <vi,…,vj>           (4) 
c(i, j) = )),(),((min jkckickji +<<    

And the optimal solution is obtained in a bottom-up manner. 
 

3. EXPERIMENT AND RESULTS 
 
3.1 The data sets 
 
All of the data were acquired in the Brain Research Center, 
National Tsing Hua University, Hsin-Chu with a Zeiss LSM 
510 confocal microscope. The mean voxel sizes for a 
Drosophila’s projection neuron image stack are 

30.117.017.0 mμ××  

 
3.2 Evaluation of the proposed method 
 
In our experiment, we set 0.1=λ , 0.1=w  and the template 
T, is a box with sizes 355 ×× and the awarding functions is 
simply  
 

5.0),( −=qpf        if  kSq ∈  for some k.                         (5) 

 
Although this awarding function looks naïve but the result is 
good. In Fig. 1, we present the maximum intensity 
projection (MIP) of the original data and the traced result 
when the awarding function is applied. Fig. 1(d) shows the 
-approximated centerline. In Fig. 2, the -approximated 

centerline of a more complicated structure, the projection 
neuron in Drosophila’s lateral horn is presented. 
. 

4. DISCUSSION AND CONCLUSION 
 

In this paper we present a practical neuron tracking 
algorithm based on minimal path finding method. This 
algorithm performs well when we deal with a 3-D image 
stack in which the spatial resolution in one direction is much 
worse than the spatial resolutions in the other two directions. 
To process this kind of data, we propose to separately 

compute the skeleton of every object in the foreground of 
the image stack slice-by-slice first. The candidate end points 
are then calculated from each slice. There are over-estimated 
candidate end points. The redundant end points can be 
removed during the construction of the 3-D shortest paths. 
The proposed method avoids human intervention to choose 
the neuron tips as end points in 3-D volume. Moreover, 
instead of only considering the path length, the designated 
awarding function keeps the traced line structure lies in the 
middle of the desired structure. In conclusion, the proposed 
algorithm is promising to trace the neurons in spite of the 
insufficient resolution in one direction of the acquired 
images. 
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Fig. 1. The projection neuron in Drosophila’s calyx (a) The 
maximum intensity projection (MIP) of the original image 
stack. (b) The neuron tracing result without using the 
rewarding function. The tracing result is drawn in green and 
is overlap to the MIP of the original data which is drawn in 
red (c) Red lines shows the tracing result with the rewarding 
function is applied. (d) The -approximation of the tracing 

result shows in (c) and 2=ε . Both (c) and (d) are 
rendered by directed volume rendering. The voxel size is 

30.118.018.0 mμ××  
 

 

Fig. 2. This figure shows the -approximation, 2=ε , of 
the  Drosophila’s projection neuron in the lateral horn. The 
red lines are tracking results. This figure is render by 
directed volume rendering. The voxel size is 

30.116.016.0 mμ××  
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